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1. INTRODUCTION

The distributions of the eigenvalues or functions of
the eigenvalues of random matrices are very useful in test-
ing various hypotheses in multivariate statistical analy-
sis. These distributions are useful in nuclear physics
also since the behaviour. of the energy levels at high
excitation levels in nuclear physics may be explained by
considering the distributions of the eigenvalues of cer-

¢
tain random matrices. In the area of multivariate statis-

tical analysis, the asymptotic distribution theory is es-

sentially restricted to the case when the sample size tends

to infinity holding the number of variables fixed. But,
many situations arise when the experimenter is confronted

with the problem of drawing inference from the data when

P-4 VI PRI

the number of variables is very large. Wigner [7] con-

sidered the problem of deriving the distributions of the

POVSTOT IO

eigenvalues of the "Gaussian matrix'" when the number of

variables tends to infinity; Jonsscn [4,5). Wachter [6]

and others have investigated the distributions of

4

i; the eigenvalues of the sample covariance matrix when the

i number of variables tends to infinity, 1In this paper, we
will show that the spectral distributions of a sequence of
3 the products of the random matrices will tend to the dis- g
tribution function in the limit as the number of variables

[ tend to infinity. An application of this result in deriving

the distributions of eigenvalues of the multivariate F q

matrix when the number of variables tends to infinity will

v

be discussed in a subscquent paper.

as
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2. PRELIMINARIES

Let Ap be a pxp matrix with real eigenvalues

< Qp. Then, we define a distribution function

i < x},

1
F (x) = = #{i: 2
P( ) P
where #{ } denotes the number of elements of the set { }.
We call this function the spectral distribution function of

Ap.
We are interested here in a sequence {Ap} of random
matrices, each Ap has only real eigenvalues. If the spectral

distribution Fp (x) of Ap tends to a nonrandom distribution
function F(x) as p » «», in some sense, then we say that the
sequence {Ap} has a limit spectral distribution (in the given
sense) F(x).

Jonsson [4,5] proved that a sequence of Wishart matrices
has a limit spectral distribution. Wachter [6] got more
general results, but he still considered matrices of Wishart
type as was done by Grenander and Silverstein [3].

In this article, we consider a different type of random
matrices, namely products of certain random matrices.

Let X i, § = 1,2,... be distributed independently

ij’

and identically as normal with mecan zero and variance one.

Also, let

be a Wishart matrix where

X = (

b xij’ 1<i<p, 1<j<m).

Then wp is known to be the Wishart matrix with m degrees of




freedom,
For cach p>21, let Tp = (fi;, 1<i<p, 1<j<p) be a matrix
of random variables. We suppose fg; ='E§:, and TpiO, for

any i, j = 1,2,...,p, Pp = 1,2,...

Our main result is the following theorem.
Theorem. Suppose

(1) {xij} and Tp's are independent

(2) the limit 1lim | - y exists and is finite

m’p-)m
(3) if Gp(x) is the spectral distribution of Ts, for

each fixed k, EJxkd Gp(x) are bounded as p + =,
k 2
(4) 1im J X de(x) = Hk exists, for k=1,2,..., in L (P),
P

o .1
and z HzEE =+ o(Carleman's condition, see Feller[2])
k=1

Then, the sequence {% prp} has a limit spectral distribution

in probability, i.e. 1if Fp is the spectral distribution of

{% prp} then there is a distribution function F such that

Fp(x) + F(x) in pr. as p » « for any x. F(x) is nonrandomn.

If F (x) 1is the spectral distribution of 1 WT,
p , m PP

and Mk - I xdep(x) is the k-th moment of Fp(x), we shall

prove the theorem by proving

(5) E, =1lim EMk exists for k=1,2,3,...,

k pr*™
(6) Var Mk->0 as p+o, for k=1,2,...,
- 7%
(7) ZE, = + o,
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The main difficulty is to prove (5). In order to prove
(5), we need to develop a theory on a special kind of mulei-
graphs and we call them Q-graphs. Thus our work involves
combinatorial problems.
We will use the following lemma.
k1
Lemma A. E Ix dG

kh
(x) ... Ix deG » 0 as p » =,

(x)—Hk ...H

P P 1 Ky
for any fixed positive integers kl,...,kh.
Proof. We prove by induction on h. For h = 1, this is

a direct consequence of condition (4). Suppose Lemma § is

true for h - 1. Then

P - g
P

k

X X -
Jx dG e e | X dG ( ) HI .--Hl

k

Kk
E Jx lic (%) ...Jx h-14¢ (x) '
P P

IA

k

k
+ E Jx le (x) ...[x h-1yc (x) '-H, ...RH ‘H
P P

EZ

k k 2
Jx 1de(x) ...Jx h.lde(x) | .E

| A
N =

So, we have only to prove E

bounded.
Let k = max(kl,...,kh_l). For some a>2, by Holder in-

equalicy,

kl kn—l 2
Ix de(x} ...Jx de(X) l b

a
< Ix de(x).

kadcp(x)

But if k., > ka is any integer, by condition (3),

1

EJxkadcéx) = EJ xkadcp(x) + EJ xk“dcp(x)

x<1 x>1

K K

<1 + EJx 1dcp(x) <1 + ij !

x>1 x>1

dG (x) .
p

which is bounded.
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3, SOME RESULTS ON GRAPH THEORY
?‘ We first prove some results on graph theory.
N Let V,E be two finite sets. Suppose there is a function
s g:E>Vx V. Then (V,E,g) is called a multidigraph. If xeV, yeV,
i! ‘ (x,y) will denote one of those cdges in E whose g image 1is (x,y),

sometimes we write xy instead of (x,y).
If veV occurs in the list {g(e) = (gl(c),gz(e)), e ¢ E}

as gl(e) or gz(e) just d times, then we say that the degree of v is d.
[}

Definition. Let (V,E,g) be a multidigraph.If it satisfies

the following conditions, then we say that it is a Q-graph:

1°. Each vertex (i.e. element of V) has degree 2.

2°. V is divided into disjoint classes such that the
graph 1is class-connected, i.e. for any two
classes A and B there are classes A=AO,A1,...,Ar = B
and edges (xi,yi) (i.e. element of E) with X, € Ai—l’
Yy € Ai’ i=1l,...,r.

For Q-graphs we have the following results.

Lemma 1. A Q-graph G with k verticesband w classes

consists of at most k-w+l cycles (we see loops as cycles).

G consists of just k-w+l cycles if and only if

o

1°. Each cycle meets each class in at most one vertex.

A o
2°. There can be no such sequences as

t Al,Cl,Az,Cz,...,Ar,Cr,A1

re

. where Ai's are different classes, Ci's are different

: cycles and C1 meets A1 and Ai+1 for 1=1,2,...,r(Ar+1=A1).
. Proof. 1Tt 1s evident that a Q-graph consists of disjoint

@

cycles.

S 4 e aoaa Al - A n s moe D senn, Bt s i PIREIN WA S S Sy PN WY W S VY G S W Ty G S S Y




o Sman amas e gune dmnr o e A e

Let G be a Q-graph with k vertices and w classes. Suppose
G has maximum number of cycles. We prove that conditions 1°

and 2° are fulfilled.

Suppose that cycle C of G meets class A in x and vy,

x#y are two vertices. We replace C by two loops (x,x) and
(y,y) in case C has only two vertices. Otherwise, suppose
€= xq %y x4 Xp Xy
in which X; = X, X = y. Then we replace C by loop (x,x)
[ 3

and cycle

c = xl...xi_1 xi+1 . e xrxl'

The resulting graph is still a Q-graph with k vertices and w
classes, but the number of cycles has increased. This con-
tradicts that the number of cycles of the graph G is maximal.

Suppose 2° is not satisfied, and there is a sequence

ALsCluAy,Chynn s A,C LA

of different classes A,'s and different cycles C,'s, such that

i i

C, meets Ai and Ai+ﬂAr+1=A1)’

ted from all vertices on Crwhivh belong to Al and the cycle obtained

We replace Cr by loops construc-

from Ct by deleting all these vertices, The resulting graph
is also a Q-graph with k vertices and w classes, but with more
cycles.
o o \ .

Thus 1 and 2~ are satisfied.

In the above proof we see that any Q-graph with k vertices
and w classes can be replaced by a Q-graph with the same k and
w, with not less cycles and the latter Q-graph satisfies 1° and

20
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In the following we prove that any Q-graph with k vertices

and w classes satisfying 1° and 2° must have k-w+l cycles.

Let C1 and C2 be two arbitrary cycles, passing through

some class A simultaneously, and both contain vertices outside

of A, C, =...Xx

1 c

1ylzl..., 2 =...x2y222..., Yi» yZSA.

i and Cé, and C. is the loop

1

Then we replace C, and C, by C

1 2
'
ylyl, C2 —...xlyzzz...xzzl...

Because class-connectivity is preserved, this prodedure
can be continued until there remains only one cycle C which
is not a loop. C must meet every class. We note that in this
course k,w and the number of cycles do not change. C has
w vertices, the remaining vertices constitute k~w 1loops.

So, there are k-w+l cycles.

Let G be a multigraph (V,E,g). Let F be a partition of
V into disjoint subsets, i.e. F 1is a set of subsets of V,
these subsets are mutually disjoint and their union is V.

Let f: V»F be the mapping such that f(v) is the subset in F
which contains v, for any veV. 1If we use fxf to denote

the mapping VxV->FxF with f x f:(vl,vz)k~7(f(vl),f(vz)), then

a poR - [P SPRRUUP NI W W
I G TP S e e e — 2 A - - -~

aia s A AsA Ak B
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evidently G = (F,E,(fx f)og) s also a multigraph. This
multigraph is said to be obtained from G by identification
according to F, and a subset in F with more than one ver-

tex 1s called an identified vertex.

P i e e,
- PR al .
s . -

In the following, by an arc of G we refer to a finite

sequence of edges of G X Xgy XpXg,e such that only

.o X X
r-1"r

X, and x,. are identified vertices, i.e., only they are subsets in
F with more than one element.

Lemma 2. Let G = (V,E,g) be a multigraph with *k ver-
tices and w classes, and G = (F,E,(f x f)og) be the multi-
graph obtained from G by identification according to a partition
F of V. Let £ be the number of arcs in € and n be the
number of free cycles (those cycles of G on which there are
no identified vertices). Then §/2 + n<k-w.

Proof. Let Po,Tl,...,F be the cycles of G. They are

d

so arranged that for any i, Fi passes through a class which contains

vertices of some of the cycles T ,...,T,

1_1.Cyc1es Fo,...,Fi con-

stitute a subgraph G, of G. If we identify vertices of Gi in such

i
a way that 2 vertices are identified if and only they belong

to the same subset in F, we get a multigraph 61, éd = G.

Let a, be the number of arcs in 6i(with respect to the

Tl o W

identified multigraph éi). Evidently ay increases with {1,

and a; = €, a, = 0. Let n; = 1 or 0 according as Fi is free or not

(with respect to G), and

Ci be the number of vertices of Fi

Lan s Seananms

which belong to classes containing vertices of T, ... T

0 i-1°

| gt s ann ot §
AN .
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1 .
We assert —2-(ai - ai-l) + Ny ici’ i=1,2,...,r.

If ny = 1, then a, - a = 0, but ¢

equality holds.

>0, so the in-

Now assume n, = 0. Take a class A of G, which contains

some vertices of FO""’ri-l

the common vertices of A and Fi be Xyseeos

and some vertices of Fi. Let

x, among which

XysXgse oo Xy take part into identification with vertir - of

PO oo ri-l or that of Fi. There are five ways to id 1fy:

(1) A single X, is identified with an identifi

vertex y of Gi-l’

(2) A single X, is identified with an unidentified

vertex y of Gi—l’

(3) Several xc's are identified with an identified ver-

-~

tex y of Gi—l together,

(4) Several x 'g are identified with an unidentified
c

vertex y of Gi—l together.

(5) Several xc's are identified together, without vertices of

Gi*l taking part into this identification.

and the increment of number of arcs by the above five different

ways of identification are the following, respectively:

(1) one,
(2) two,

(3) number of these xc's

(4) number of these Xc's plus one,

(5) number of these Xc's.

In any case, the increment of the number of arcs does

not exceed

PP VW .

twice

. -
PRI LW W Y

Ml

X

N RRY]

-
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the number of vertices of Fi in A taking part into these identifi-

cations. Summing over all such classes A, we get

1
2(81‘81_1)+ni_<_ci, i=1,. R 3
because n; = 0 Thus
r
1
76+ 1.2 oy
i=1
r
We now prove Z Ci < k-w, by proving that there is a
1 r
Q-graph with k vertices and w classes but with more thin X ci
1
cycles, so, Z;i < k-w+l.
Begin from P1-F1 has Cl vertices belonging to classes
in which there are vertices of FO. We let xl, be one of

these vertices., If there is only one such vertex, then we let

it remain there untouched. Otherwise, if ?1=... y X5 z...

then we replace Fl by the loop (xl,xl)and regard T

1 the cycle

We continue this process until there is only one vertex of Fl

which is in some class with some vertices of To together.
Then we get from legl - 1) loops and a remaining cycle, totally

;1 cycles., In the same way, we get,ffom T cycles, ... .

2252
At last, we get a Q-graph with k vertices and w <classes and
1'+c1+...+cr cycles, here 1 1is for the cycle FO. Therefore

C1+---+C <k-w. And the lemma is proved.

i}

Let A-—{Al,...,Aw} be a partition of {1,...,k} into
disjoint classes, and B = {Bl,...,Bv} be a partition of
{1,2,...,2k} into disjoint classes. B will be called a parti-

tion subject to A 1if every B class is included in some set

e P UL e

e ¥YZooo
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of the form A; = (2Ab -1)U(2Ab). B is called even if every

class of it contains just even number of elcments. If every
class of B has just 2 numbers then B will be called a
pairing.

Lemma 3. Let A= {A .,A }, B= {Bl,...,BV} be parti-
tions of {1,2,...,k} and {1,2,...,2k} respectively, B be

subject to A and even. Suppose at least one B <class has

more than 2 elements. Then,

2

k4w+1)’ in L2, %

s= 7't t - =o(p
1)1 71,1, Lokl

Here Z' means the summation is taken over all (il,iz,...izk)
for which 1 <1, <Pyeess lf_i2k <p, and if a,B Dbelong to the
same B <class, iu = iB.
Proof. It is evident that we can find a pairing D of
the set {1,2,...,2k} subject to B, i.e. each pair is a sub-

set of some B-class.

If we regard 1i,1i

2 i

1 23S edges and pair

3 1415""’12k
{ia,ib} as vertics if a, b are a pair in D, we get a multigraph G.
If we classify the vertices of G according to A, i.e. two ver-
tices {ia,ib}, {ic,id} belong to the same class if and only if
these four integers a,b,c,d all belong to an.Ag = (2Aq—1)U(2Aq).
Thus we get a Q-graph, its class-connectivity is easy to sec,
and it is evident that each vertex has degree 2,

We can further identify the vertices of (¢ into another

multigraph G according to the partition B just as in Lemma

2, two vertices are identified if and only if the pairs defining

*In the following, we will write tij instead of gg;.

10

]
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them have indices included in the same B class.
Because a Q-graph consis:s of disjoint cycles, we can

write the sum S as

here C_'s are "cycles" of the form: C_=t, t P .
a 3 Tipdp dpd3 0 3.9y

corresponding to cycle j1j2j3...j jl of G. Z" means we have
c

to identify further the indices whose subscripts bedong to the

same B class.
]

For those cycles which are free, i.e. on which all ver-
tices need not further identifications, the summation can be

carried out:

!

=tr Tl= andc (x)-p
Fiyeeesd P P
1’ >R

tjljztjzj'}...tjgjl
The remaining cycles are not free, they have indices identified
with other indices. 'But on these cycles there are two kinds of
indices, free and not free. Free means it occurs just twice.

Carrying out the summation with respect to free indices,
by the definition of multiplication of matrices,

(n)) (n)) k k
5 tr T 1 tr sz...tr Tpn, *

here £ ,n have the same meanings as in Lemma 2., Notice that

,b occurs at least four times

each of the indices a,,b....,a £

1°71° €

in this 1list.

In general, let the general term of a sum of the form

* t:g)

. n
denotes an entry of the matrix Tp.

11




R = Z f.(a,)...f (adg,[a, ,a. |g,[a, ,a ...82 |a, ,a
als... 1'71 r r’®1 11 i 2 12 j2 s 1s js
7‘ be a product, and each factor of it depends at most on two
indices and each index ai occurs at least four times,
T ;here the summation is over dysecesa,y Ay ,...,ai s aj I I
1 s 1 J

' : Then,

| 2 2 2 2 2

. R <) f,(a))... ) £ (a)) ) gl[ai ray ]... ) g {ai »ay ]
a a 1 1 a s s

a, ,a
1 r i jl

In fact, by Schwarz inequality

2 2 2

R <) fl(al) Z { Z F(al,az,...)] .

a, aj{az,...

The sum inside the bracket has the same property as R 1if we

regard a, as constant. The inequality is thus proved by

induction. The case r =0 «¢an be proved similarly. So,

—(ng 2 kl 2 k2 2
LN ér -(tr Tp ) ...{tr Tp ] .

- (n 2
s?< ] Lta ;):[ e )
al,b1 171 aC'bE A

But, because of symmetry, Z [t::)lz = tr Tin thus
a,b

2n 2n k -k y2
52 < [l tr T 1]. ..[l-tr T g] fl tr T 1]. ..[l-tr T n] -p(”+2n
— P P P P \P P P P

So, by Lemma A since % tr Tg = qude(X),

[
7]
Il
o
—
©
[ SIK
+
3
| S—
I
[}
—
)
]
€
+
st
o
Jude
=1
r
N

by Lemma 2.
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4. PROOF OF EXISTENCE OF E(M,) WHEN p » = 4
Let Fp(x) be the spectral distribution of the matrix b
1 1 :
- . . X = - H < £ <o'o<2 & - -
mprp’ i.e., Fp( ) 5 # {1 8y < X}, here EAERRLN are eigen .
1 % s :
values of W T . Note that because W T =W W'T and W°T W g
mp p . PP PPP PP g
1 -
have the same eigenvalues and WeT w% is symmetric, £,,...,12 &
PPP 1 P g
are all real. )
Let ]
k
Mk = J X de(x), k=1,2,... . :
-
. )
In this section we will prove that EMk-*Ek as p*+> and N
A b
2k -3
ZEZk = o, 3
We have
k 1 E kK _ 1, 1 k
Mk J x dF (x)--p 21 > tr(mw Tp)
i=1
)
= — w, ., t w t oW t
pmk T iplp ipigiigd, i de iy T Tty
here the sum is taken with respect to each index il 12""’12k ;
9
running from 1 to p. Remember q
m :j
w = ) X,.X_, iy
R P 1
i
So u
1 2 ]
M =— X X X X ..o X X t. t . 4
. . 1 J
kopa® T Ty 1y a3 0y T T gt i Bty ity it :
here j,,..-,] run from 1 to m. f
1 k .
L3
Noticing xij and tij are independent, we have
1 Z k
EM = ——- E I X X *E t t seat .
k pmk q=1[ 1Zq—IJq 2qjq) i213 i4i5 iZkil ﬂ
13 j:
]
e SR e .
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Since for different (i,j), xij's are independent, we would
]

collect the factors XI j Xi j together for equal jq s,
2q-1"q "2q7q
and split such factors for different jq's. Thus for each
X-product we have a partition A={A,,...,A } of the set
1 w
{1,2,...,k} such that two integers q and q' belong to the
same A class 1iff jq:jq,. The whole sum is then split into

a sum of sums, each of the latter has the same partition A.

Thus,

X X, . ) Et, .t R .
1[ 1y4-134 i2q3q) PR NEVAY S DS

=%

=—1;Z ) ] E
A@A (1) g

here z means summation over all possible partitions of
A

{1,2,...,k}, (i)A means jq =jq. iff q and q' belong to a
common A class.

Given A = {A Aw}, a partition of {1,2,...,k},

10
given vector (j) =(j1""’jk) such that ja==jb iff a,b belong
to the same A <class, we denote the different w values of

jl,...,jk by rl,...,rw, and understand that r =13, if b eAa.

Then the inner sum of EMk is

=€

s = ) E n (x X E(t t ceet, .
A5 (1) (fy a=1 beAa[ 12b-17a i2b'a) [ iy ity ity

Given a partition A of {1,2,...,k} we can correspond

a partition A* of {1,2,...,2k} 1in such a way: if A=={A1,.

A*’i{A*,....A:} , here A:= (ZAa—l)U(ZAa), or equivalently,

neA* 1ff [“+1

]eAa. With the aid of A*, we can write

14
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w
s = ) nmE[(n X ‘Et t et .
A,(r) (1) a=1 [biA: ibra] i, i, 71,1 i,.1

In order that a term in this sum does not vanish, it 1s necessary

that each E 1 X1 r # 0. And if this holds, A* pust be further
beA; b a a

partitioned into classes, each class contains even number of

elements and ib==ib, iff b,b' belong to the same class. As

a whole, we must have a partition B of {1,2,...,2k}, it is

* *

even, a refinement of A*, and if b,b' belong to the same A
]

class, then ib ib' iff b and b' belong to the same B class,

w
in order that mE I X, # 0. In this case.
a=1l beaA* 1bra
a
w
m E I X, = K(A*,B)
a=l bea* bTa

depends only on A*,B and is independent of special values
of (1).
Thus

= K(A*,B) Et
B> A* (i)}A*,B 1yl iis’ gty
B even

SA.(r)

Here BiA* means partition B of {1,2,...,2k} is a refinement
of A¥*, (1)|A*,B means if b,b' both belong to a same A* class
then 1b'=ib. iff b and b' belong to the same B class. We
see that sA,(r) is independent of (r).
Suppose B 1s a pairing. Then we can define a Q-graph
*
G(A*,B). The edges are 1213, 1415""’12k11' The vertices

are pairs {ia,ib] where {a,b} is a B-class. The classes

of vertices are determined by A%*,

15
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- Case 1. B 1is a pairing and G(A*,B) has less than :F

- k-w+l cycles. We consider the sum E

' s = ) Et t c.et (3
x .

] Ax,B (1) [a*,B 113 1,15 ol

2

Because G(A*,B) is a Q-graph, 1213’1415""’i2k11 constitute

Ez

& -t

h v <k-w+l <cycles. Thus [ }

! S = 7’ E ?
- : A%,B = C,Cy---C,

- jl”"’jk .

- h ' " " ' ~
‘ ere Ca s are "cycles", Ca = tj 3 tj 3 ...tj g o Y q
N aj"ajy “ajz-aj a,~a; jl,...,jk

X means the sum is taken with respect to k identified indices

2

. jl,...,jk varying from 1 to p but when two of them belong to the >

E same class of vertices determined by A*, they must keep different mutually, .?
. Thus SA*,B can be expressed as

T Sax,p = 1 EC Cae-Cys

ﬁ S »
3 "4
b here I,s.-+,1 ~are inequalities of the form ja#jb between two ]
- indices belonging to the same class of vertices. By inclusion-e» lusion

principle,
S =

A*,B
I A A e

jli""jk a Ia a a,b

here ia denotes the negation of Ia' By Lemma 3 the terms in

k-w+l
P

the bracket are all o ), and by Lemma A

n n -
) =EtrT ...tV k-wtl
P P

=0(p’) =o(p )

Bpeeeody

16
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Therefore, in .this case

S = of

pk-w+1)
A% B *

Case 2. Some B <class contains more than 2 elements.
By Lemma 3 and the inclusion-exclusion principle, 1t is seen

in the same manner that

o(pk-W+1).

Sax,B .
Case 3. B 1is a pairing and G(A*,B) has k-w+l cycles.

combining the above discussion .
1
EM = —r ) ¥ ) K(ASB)Et, . t, . ...ty
Pm A(D|A B> A% (1) |A*,B 273 475 2k"1
B even
=L Vam(m-1)... (m-wt1) (J+ T D) 7 K(A%B)Et t celt
kA 1213 1415 1o 1
pm (1)’A*,B

Here, w is the number of classes of A,Z',Z", Z"' correspond
Case 1, Case 2 and Case 3 respectively. Notice that for Case

3, K(A,B) = 1. Thus

k w
EM, = J ¥ _“‘_k y' ) E(t, , ty 4 +o-ty ) +o(1).
w=1l A,A has pm BiA* (i)IA* B 2°3 475 2k"1
w classes B even i

We need the following lemma.

Lemma. GCiven a partition A of {1,2,...,k} with w classes
and then a partition A* of (1,2,...,2k}, there is at most one
paliring B subject to A* such that G(A*,B) 1is a Q-graph with
k-w+l cycles.

Proof. Suppose G(A, B) has k-w+l cycles. Then,

1°. 1f 4., and 4

*
2r 2r+1 belong to the same A* class, they

17
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must be identified. Otherwise, there would be a cycle
meets two vertices with a class.

2°. There are no sequences of the form:

A* | L., A* , L., A¥ ,...,A%* | L, A* ,
1 1 a, 2 aqy a_ r a,
here A* A% |, ., ,A* are.diffcerent classes and L 1is a simple
a1 %2 A 1
path begins at a vertex in A; and ends at a vertex in
q
* = . = . )
Aaq+1(q l1,...,13 a al), and the end of Lq_1 and the

beginning of Lq are not identified though they are both in
L]

A* L]
a
q
For, if such sequence exists, Lq should be completed by

other path into a cycle Cq’ q=1,...,r. If these cycles are

different, then we will have a sequence

A* | c,, A* , c.,...,A* , c_, a*
a, 1 a, 2 a r a,
which is prohibited by Lemma 1. Suppose C =C, and C C

d+1 1 1*°°°*"d
are distinct, we would have the prohibited sequence '

A, ,osCy, A* , C

, A* .
2 a3 a 1 a

d+1 2
o
Thus 2~ 1s proved.
If G(A*,B) has k-w+l cycles, then as we just proved,

1°, 2° are true. And if we start from 1213, preserving 1

o
and 20, we see that it is determined completely which indices
should be identified. Thus GC(A*,B) 1is unique.

By applying this lemma,

§ oy
EM, = ) — ) E(t, 4ty 4 -.-t

k i,,1,) +0(1).

18
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. .
Here, z means summation over those partition A of
A

{1,2,...,k} with w classes, for which there is a pairing

B of {1,2,...,2k}, B> A*, such that the Q-graph G(A*,B)
has just k-w+l cycles,

If among the k-w+l cycles of G(A*,B), there.;re n
loops, n, cycles with 2 vertices,..., n, cycles with w ver-
tices, then

nl+n2+...+nw = k-w+l,
n1+2n2+...+wnw = k, ¢

and by Lemma 3 and inclusion-exclusion principle

n : n n
Z t, 1.8y PEREEE 1 =(trT ) 1(trTz) 2...(trTw) w+o(pk_w+1).
(1) a*,s 273 745 2k P P P
But by Lemma A, for all r>1, as p +» o
n n n n, n n_
1 1,1 2,2 1 w, W 1,2 W
=trT =trT ees (=trT —> H,"H «..H
E(ptrT ) *(GerT)) (GrT)) L H, Y
we have
k n. n n
E =limEM = ) y<¥ ) nlu 2. 0N .
k k _ 2 W n.n,...n
p*e w=l n1+n2+...+nw—k-w+1 12 w
n1+2n2+...+wnw=k
Here N is the number of those partitions A of the

nn,...n,

set '{1,2,...k} into w <classes, for each such A there
exists a pairing B of (1,2,...,2k}, B> A*, and the Q-graph
G(A*,B) has n

1 loops, n, cycles with 2 vertices..., n, cycles

of w vertices.

19




For evaluating N we note that to each such G(A*,B) we

nlnz. . .ﬂw

can construct a finite sequence of integers in the followling way: we draw
this graph along the order 1213, 14 15""’12k il’ and the sequence 1is
defined as
1°. The 1lst term is 0,
2°. The 2nd, 4-th,...,2k-th terms are 1,
3%, 1f 12r12r+1 just completes a cycle of length s, then the
2r+l-th term is -s, otherwise 2r+l-th term is O.
Such sequence has the properties that: it has 2k+1l terms, *even
number terms are 1, odd number terms < 0, total sum is 0, partial sums > 0.
It is easy to see that an...nw is the number of such sequences,
in which there are n, places with -1, n, places with —2,...,nw places

with -w. With the aid of a lemma in Jomsson [4,5], it is seen that

N _ 1 (k+1)!
= > i .
Ny...n, k+1 n, ... ‘k+1 - (k-w+1))!
- k!
nl!...nw! w!
Then
k
- \ n n
Ek- 2 ykw Z ————l(-'—'"-——'Hll...Hw.
wel nll...nw. w! w
n,+...+n =k-wtl B
. 1 w
n,+...+wn =k
1 w

By a well-known inequality about moments, if k 1s even,

1

|Hnl an Hnw|< k(nl+2n2+...+wnw).- ;

1 Hp eelBo < By = Ry
Thus

K
-~ ki (k-w+l)! D1 Ny wny
B l<h ¥y " o L y Cooay
Al Gean R T )
n1+...+wnw=k

20
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The inner sum is the y term of the polynomial (y+y +...1y )

But this polynomial is dominated by the power series

2 —w+ - ~k+w-
(y+y +..‘)k wtl _ yk w+l (1-y) k+w-1
its yk term is
(k-w+l) (k-w+2)...(k-1) _k _ (k-1)! k
(w=1)! y (w=1) ! (k-w) !
Therefore, if k 1s even,
B < § oy o _K! (k-1)!
K="k LY e DTt (welt(k-wy Y e
=H kil v k! (k-1)!
k 207 GFDIGVT (k-v-1)Iv]
kIl v kv k4 1 2k
= H, VZO y (v)(v+1)-— < Hk(1+y) .
s
o 1 _1
z IEkl ki 1 7 E Hkk = 4+ @
k even (1+y)” k even

21
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e 4. ASYMPTOTIC LIMIT OF VARIANCE OF Mk

In this section we prove that for any integer k>1

r‘ Var Mk= EM& -(EHk)z-*O as p + =,

Then we will complete the proo.l of the theorem.

. . We have
I - 2 1 - . k
M ~——>-Ell I 1 ] ) ! o X

xi .
P A (Dla (D) A" (A (1) g=1 | 22q-13q P2qdq

k ¢
J Gy, Ba Xyp g 0ty g 65 g oooty g Eyrgatiage een By 1{}

q'=1 2q'-1 2q’ q 273 7475 2k"1 273 T475 2k71
Here,
A a partition of {1,2,...,k},
A' a partition of {k+1,...,2k},

(3) = (pseendy)y 123 Sm,0., 125, <m,

(') = Glseeend)) = Gpyoeeandy)s 1831<m,enn, 023y <m,
1) = (11,...,12k), 11115p,...,1512k5p,

(') = (Aseeesig)) = (yppireeantyg)y 1241 20,000,104, <p,
(1|A means 3, = J, 1ff a and b belong to the same A class.

(3")|A' means j; = jg iff a and b belong to the same A' class.

We split the sum for EM2 into two parts:

k
2 1 1
EM = —575% L) *t 7w Ll
P m P m
i‘ In 21 we collect all those terms in which some coordinates
of (jJ) equal some coordinates of (j'). 1In 22 we collect

X all other terms.
o

22
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I.=E[] ¥ JlEnm (x X, . t ... X
3 Ala @] o=t i2q-1jq iZqu iy i, !

= x

X E xl t 1 L [} l"'t [ []
AT (3D ]A (1Y) q=1 12q—1jq iquq i415 i2k11

K
Y, =E|) Yy lE 1 X X t t coot )
@ (jglA (1) | q=1| l2q-13q T2qdq){ f2l3 t4ls T ixnt

k
) ) JOUE T (X0 Xy cad bt ntonineeetyy o
AV (DAL GN@ e (] a=1{ '2q-19q T2¢3q){ 1273 tals fah

From Section 3 and the hypothesis of the theorem, it is seen that

1 2 _ 2
7% L3 llhnEMk] = E,
p m

In za,(j')lA' has w' free indices, here w' 1is the number

of classes in A'. But (§')n(j)¥ ¢, so some j; have to be

fixed to some jb. Thus the number v' of free indices in

(1')|A' 1is less than w'. So,

w'-1 k-w'+1
m P

=7 o ) =0(p%),

) ) )
A" (3 ]A, (D0 (1) A

and as p * =,

1 . | v w o k-w+l SN IS O
;‘;7? I = b2y 2k E[g'“ o(p )O(p {} = o) ~ 0.

Therefore, as p > =,

1 2
2 7k Ly * Eg-
p_m

23




As for 21' we at first fix A and A'. Under (j)|A,

the k 1indices jl,...,jk reduce to w different vaiues

h "hw’ and under (j')|A', the k indices ji,...,ji reduce

1..‘

to w' different values hi,...,h&,. Now 1in Zl, some h; must
: . v - (-

equal seme hb. As an example, suppose hl hl’ h2 h2’ but

no other such relations. In this case, we consider the parti-
tion of {1,2,...,2k}:

-~ -~

1280 By A

A= (A ) = (A uAl, A,UA;

gUAgs Ags..A,

In order that a term in 21 corresponding A,A' and h1 =h

h2 =hé, does not equal 0, i.e.

Ef T X X E [t t I o .t t seut
1ye-13q iquq] [ Liz s ady Tawetaes aatokes it.k12k+1]

# 0,
it is necessary that there is a pairing B of {1,2,...,4k} such that each pair
is included in an A* class, here the * has the same mcaning as before, and

if a,b 1is such a pair then 1a=i Thus, under such identifications,

b
constitute a multi-

i1.,1,1 i

PRt LRV LR T T )
graph, consisting of disjoint cycles. This graph is a Q-graph, because it

2a+3* owssatokes  Laklokel

is easy to see that the w+w' -2 classes are connected by these edges. So
it has at most 2k-w-w'+2+1 cycles, If there nced more identifications,

we can quotate Lemma 3. Then, as p —+ =,

1

O(P- )"0’

1 s 1 . wtw'-r 2k-w-w'+r+1y _
L2, 2K Iy "7k § Az. 0 (m P ) =

here r 1s the general number instead of the specific 2 in the

example,

Therefore

(EMk)2 +» 2 g% = 0.

oy 2
Var M, = EM~ - K

k k

=N
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